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Committing words to paper in handwriting is a uniquely human act, performed daily 

by millions of people. If you were to present the idea of “decoding” handwriting to 

most people, perhaps the first idea to spring to mind would be graphology, which is 

the analysis of handwriting to determine its authenticity (or perhaps also the more 

non-scientific determination of some psychological character traits of the writer). But 

the more mundane, and more frequently overlooked, “decoding” of handwriting is 

handwriting recognition—the process of figuring out what words and letters the 

scribbles and scrawls on the paper represent.

Handwriting recognition is far from easy. A common complaint and excuse of people 

is that they couldn’t read their own handwriting. That makes us ask ourselves the 

question: If people sometimes can’t read their own handwriting, with which they are 

quite familiar, what chance does a computer have? Fortunately, there are powerful 

tools that can be used that are easily implementable on a computer. A very useful one 

for handwriting recognition, and one that is used in several recognizers, is a neural 

network.

Neural networks are

richly connected networks of simple computational elements. The 
fundamental tenet of neural computation (or computation with 
[neural networks]) is that such networks can carry out complex 
cognitive and computational tasks. [9]

In addition, one of the tasks at which neural networks excel is the classification of 

input data into one of several groups or categories. This ability is one of the main 

reasons neural networks are used for this purpose. In addition, neural networks fare 

well with noisy input, making them even more attractive.

Handwriting recognizers are broadly divided into two categories—on-line and off-line. 

On-line recognizers run, and receive the data, as the user writes. Generally, they have 

to process and recognize the handwriting in real- to near real-time. Off-line 

recognizers run after the data have been collected, and the image of the handwriting, 

for analysis, is given to the recognizer as a bitmap. Thus, the speed of the recognizer is 

not dependent on the writing speed of the user, but the speed dictated by the 

specifications of the system, in words or characters per second.
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The most common approach, used by most recognizers both on- and off-line, is to use 

a neural network to distinguish the letters that make up the words, and then to run 

the possible combinations of letters through a dictionary to find the word that the user 

most likely intended. This is a very simplistic approach which begs important 

questions, but it is a useful foundation for comparison.

On-line recognizers

There is a proliferation of on-line recognizers developed as compared to off-line 

recognizers. There are two main reasons for this disparity. First, on-line recognizers 

are easier to build [13], because the order of the pen-strokes is known, as well as 

timing information. Secondly, handwriting recognition can easily be used for input in 

handheld or PDA-style computers, where there is no room for a keyboard. Since a 

recognizer in this use is very visible, this visibility spurs on development.

CalliGrapher

The first two commercial PDAs on the market were the Apple MessagePad with the 

Newton OS, and the Tandy Zoomer, running GEOS. The first incarnation of the 

Newton OS used the CalliGrapher recognizer from ParaGraph International [11]. As 

the first mainstream recognizer on the market, CalliGrapher, as implemented on the 

Newton, took a lot of beating, the most famous of which was a series of Doonesbury 

cartoon strips lampooning the recognition ability of the Newton devices.

Part of the reason for the ridicule was that the dictionary was of fairly limited scope, 

and often the wrong word was selected. In addition, expectations were set far too 

high, and people often gave up before the recognizer adapted to their handwriting. For 

its release with Newton 2.0 (version 2.1 [8]), there was a significant improvement 

made to the recognizer, and a larger dictionary was added. With a print recognizer 

from Apple (see below) taking a lot of the heat off of CalliGrapher, it’s been more 

respected.

CalliGrapher uses a fuzzy-logic matching algorithm to match written characters, both 

cursive and a mixture of cursive and print, with “prototypes” of letters [7]. The 

prototypes used are general descriptions of the shapes of the strokes used to draw the 
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character. When a user finishes entering a word, the recognizer attempts to match the 

strokes to active prototypes to determine the letters. If the dictionary mode is on, then 

the interpreted word is run through the dictionary in an attempt to find and cope with 

errors.

Limited training  is possible [7]. If the user never uses a particular prototype, then it 

can be safely deleted, speeding up the recognition process and reducing the 

possibility of future misinterpretation.

To know which prototypes a user really uses and which they 
don’t requires the recognizer to know the correct answer. We 
suppose that if a user corrects some answer by choosing a word 
from the list of guesses, then this word is assumed to be the 
correct answer and we will use the word for learning. We also 
suppose that if a user did not correct a word, and wrote ten words 
after it, that this word was correct. [7]

Creation of new prototypes is not allowed in the current system as implemented in 

the Newton OS, because it is time-consuming and is considered to be of little benefit. 

Adaptation of the prototypes to more closely match the user’s handwriting is available 

with an add-on package [7].

Apple-Newton Print Recognizer

The Apple-Newton Print Recognizer (ANPR) was introduced in the release of the 

Newton OS 2.0 along with the 2.1 version of CalliGrapher. Due to the pent-up 

frustration due to the low initial accuracy of the version of Calligrapher used in 

Newton OS 1, users seemed willing to restrict themselves to printing to get relatively 

accurate recognition without much training.

ANPR uses a three-step process to attempt handwriting recognition [15]. The first step 

in the process is tentative segmentation [15]. Since many characters comprise more 

than one stroke, there is no easy or reliable way to correctly divide the strokes that 

make up the word into letters. So the first task of the recognizer is to segment the 

strokes into presumed groupings of strokes which might be letters. The segmentation 

algorithm does not take into account any factors; all it does is generate all groups of 

strokes that might be part of one character.
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The second part of the recognizer is the neural network [15]. The neural network gets 

passed the stream of segments, and analyzes each segment in an attempt to recognize 

it as a letter. The neural network is a multi-layer perceptron using error back-

propogation as a learning technique. (A neural network is composed of “neurons”, 

simple units whose output is usually a function of the weighted sums of their inputs. 

A perceptron uses these units in layers, with each layer feeding forward to the next 

one. In most perceptrons, and in this one, the neural network does not process the 

entire image but concentrates on specific areas. Back-propagation is a technique used 

to train neural networks; when the output is in error, the information is passed 

backwards through the nodes to allow them to adjust their weights. Details can be 

found in a good introductory text such as [1] or [4].)

Of particular interest is the construction of the neural network. While on-line 

recognizers have the advantage of knowing the order of the strokes, it would be 

beneficial to also attempt to perform recognition on the bitmaps of the letters. 

Therefore, the neural network is set up to take two sets of inputs: the stroke data and a 

character bitmap. The two halves of the neural network independently converge on 

letters, and a final layer merges the two letter decisions together [15]. It could 

probably be said that this approach uses techniques of both on-line and off-line 

recognition.

Finally, the context-driven search is given the letters and the groupings, and it has to 

make the final decisions on which letters and which segments of strokes most likely 

represent the word the user wrote [15]. It uses a set of language models to achieve this 

goal. The language set consists of a set of rules; breaking rules incur penalties of 

differing strengths. The rules range from letter transition rules (‘q’ without ‘u’ 

following is highly unlikely) to penalizing abrupt case transitions. Also, small 

dictionaries with common prefixes and suffixes are used.

The search takes the set of interpreted letters and the original groupings of strokes, 

and figures out the combination of them which racks up the smallest penalty. This 

combination of letters, which hopefully is the user’s word, is what the recognizer 

delivers as its final output.
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ThinkWrite

IBM’s ThinkWrite system, currently available for OS/2 and Windows 3.1, is a printing-

only system [8]. According to on-line documents, the ThinkWrite system uses a 

“hybrid” [5] system combining on-line (stroke and timing based) and off-line (bitmap 

based) recognizers, suggesting an underlying concept similar to Apple’s ANPR. 

However, it doesn’t use a neural network, but algorithms to match the characters [8].

Graffiti

Graffiti [14], a product of Palm Computing (now a division of US Robotics), took the 

market by storm with the original Newton CalliGrapher debacle. Graffiti, available for 

almost all handheld platforms, takes a different approach to handwriting recognition 

than CalliGrapher and ANPR by eschewing handwriting completely.

Graffiti uses a character system in which all letters of the alphabet and all symbols are 

represented by one stroke. This solves two problems [10]. First, the stroke 

segmentation problem that the ANPR dealt with in the first stage is eliminated by the 

fact that each letter is represented by one stroke. This one-to-one correspondence 

simplifies character separation greatly. Second, since the strokes can be chosen 

arbitrarily (although some resemblance to the alphabet remains), letters which are 

very similar in natural handwriting can have strokes assigned which are quite 

different. This avoids many problems in recognition, and reduces the need for post-

processing to determine the appropriate character.

The character set of Graffiti. The dots indicate the starting point. [14]

Jeff Hawkins, in an interview with Pen-Based Computing, explained that Graffiti uses 

a pattern-matching algorithm that

“…was inspired by my [Hawkins’s] neural theory, although it’s 
not exactly based on it. It’s a very simple and clever algorithm for 
doing pattern matching. However, it’s a very different approach 
than other people have taken.” [6]

The theory that people will learn a new way to write the letters of the alphabet to 
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achieve fast, consistent recognition may be true, but as the algorithms and networks to 

recognize normal handwriting improve, then the need for Graffiti decreases, as 

happened with the Newton with the transition to version 2.0. It has been used as the 

sole input recognizer for several devices with mixed records—the Tandy Zoomer 

which flopped, and the US Robotics Pilot, which is currently enjoying a fair amount 

of success.

Off-line recognizers

Off-line recognizers haven’t had the attention—both good and bad—that their 

relatives, the on-line recognizers, had. This is quite unfortunate because they can 

play, and are playing, an essential role in a nation which is buried in paper. Several 

problem areas exist where off-line handwriting recognizers can be of use because of 

large quantities of hand-written data. Also interesting is that because the task of off-

line recognition is harder, more of the research is performed in universities than for 

on-line recognizers.

One such area is postal address recognition [12]. While performing OCR on printed 

addresses is relatively simple, recognizing the addresses that are handwritten is far 

more difficult, and a tedious task ripe for assumption by recognizers. This task is 

made easier because addresses have redundancy—ZIP codes specify the city and 

state. Also, many parts of address blocks have a limited range of values—ZIP codes 

are all digits, and are either five or nine digits long. There are only fifty states, each of 

which has a two letter code, plus a few codes for territories.

Another area where off-line recognizers are finding use is in check reading [12]. 

Millions of checks pass through clearinghouses monthly, and each one must have the 

amount written on it machine coded on the bottom. This, again, is an ideal task for 

recognizers. Checks have great redundancy, because the dollar amount is written both 

in figures and out in words. Secondly, the character set is limited—digits for the 

number field, and a limited vocabulary (“one”, “sixty”, “hundred”) of words for the 

spelled-out field.

It is important to remember that in both of these target applications, a 100% 
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recognition rate isn’t essential. Since these fields already have a large staff to currently 

process the items, recognizers can flag any item as unreadable and set it aside for 

manual processing, while taking care of the clear-cut cases. A good example is a 

check-reading system sponsored by the French post office, which has a goal of a 

0.01% error rate which it hopes to accomplish by allowing 50% of the checks to be 

rejected by the system (and routed to humans) as unreadable [13].

A. W. Senior

A. W. Senior, a researcher at Cambridge University in England, describes in [13] a 

fairly typical off-line handwriting recognition system. The system uses words written 

with plenty of separation between them from a group of words typically used on 

checks. Because of the great difficulty involved in deciphering handwriting without 

stroke timing information, as available in on-line recognizers, most off-line 

recognizers use neural networks to recognize the letters, while many on-line 

recognizers employ other methods.

On-line recognizers get the strokes input by the user as their direct input, ready to be 

processed and recognized. Off-line recognizers don’t have that luxury. Several steps of 

pre-processing are needed to ensure that the image is normalized, all strokes are a 

consistent width, and the data are changed into a form that the neural network can 

deal with [13].

Senior’s system employs several steps of pre-processing and data massaging [13]. 

First, it attempts to find the baseline of the written words, and rotate the image to a 

horizontal position. Then it finds vertical strokes in the words, and skews the images 

until those identified strokes are vertical. Then, since we want the system to be 

independent of pen thickness, all strokes are thinned to a one-pixel thickness.

Since a bitmap is rather unwieldy to manipulate, and since the strokes of the letters 

are more important, the bitmap is “parameterized” according to a grid [13]. If a stroke 

passed through a box, the box is marked according to the direction of the 

stroke—horizontal, vertical, or at the 45° angle. If the stroke falls between those 

directions then it counts as both.
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The four preprocessing steps of Senior [13]. The top left image is the original.
From left to right, top to bottom, the steps are: slope correction, slant correction,

thinning, parameterization boxes, and parameterization. Illus. from [13].

The neural network used by Senior is a recurrent perceptron [13]. A recurrent neural 

network is simply one which has a loop where some of the outputs are fed back into 

the network as inputs. This allows the network some context in which to work. The 

neural network itself is a standard perceptron.

CEDAR Penman

Penman [2] takes a different approach to off-line recognition by attempting to read 

multiple lines of naturally-written handwriting. Here too, just as in Senior’s system 

[13], the task of recognizing the handwritten words of the user is overshadowed by the 

preprocessing required. The preprocessing is similar to Senior’s, but more tasks need 

to be done as this system does not assume that the words are isolated on the page 

amidst white space.

The first step in this system is the separation of lines [2]. Penman does this by 

analyzing the outlines of the characters, and finding the “extreme points” (places at 

which the shape of the outline bends considerably) on them. From the points, it 

estimates the line height. Then it starts going through the points, grouping them into 

lines. If a group of points is too far away from a line (based on the calculation of the 

line height) then that group of characters is considered a new line.

The next task is the separation of lines into individual words [2]. The creators of 

Penman considered this as a difficult task, especially considering the fact that people 

often leave little to no space in-between words. Using an algorithm based on visual 

clues, they extracted data to use in a neural network trained to discern words.
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The result of letting the word segmentation neural network loose on an example
set of data. [2]

The word recognizer in Penman is based on feature extraction [2], in which the loops, 

lines and distinguishing characteristics of the scanned data are extracted and 

analyzed to determine the letters. The sequences of recognized letters is compared 

against words in a dictionary to aid accuracy.

A post-processing step is useful in determining which choices of words are the ones 

in the sentence. Penman uses post-processing models based on knowledge of the 

language is is recognizing [2]. Not much more detail is available in [2] about the post-

processing stage.

Guillevic and Suen

Guillevic and Suen, researchers at Concordia University, developed a system [3] to 

read the legal amount (the value written out in words) on checks. They classified all 

attempts to read handwriting into two categories: recognizing the word as a whole, or 

trying to break it up into its constituent letters and recognizing them individually. 

Eventually, it was decided to use both methods—first trying to identify it according to 

its overall shape, and if that was insufficient to then try breaking it up into characters. 

Their paper [3] only describes the first method.

Their system starts with the usual preprocessing in order to normalize the input data 

[3]. Interestingly enough, their first step is connection of broken images. Since 

conversion from a gray-scale image to a black-and-white image might cause drop-outs 

in the lettering, they use a routine which checks if two unconnected strokes are close 

enough to each other, and if they are, the routine connects them. They did not say 

how they defended against spurious connections; while the word recognition 
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described in [3] wouldn’t be terribly affected, it is unclear what affect it might have on 

a letter-by-letter recognition.

The next step in preprocessing is the usual slant correction [3]. This simplifies 

recognition by eliminating some of the natural variation of people’s handwriting. This 

recognizer, unlike other recognizers, doesn’t bother with slope correction. This is 

probably due to the fact that checks have a line to write on, and most people stay on 

the line.

The last two steps in preprocessing [3] are noise removal and line removal. Noise 

removal identifies all the connected components of the image and removes all of them 

under a given size. Line removal identified the long horizontal lines many people 

write before and after amounts and removes it. Both of these steps help the recognizer 

by removing as much non-word data as possible.

The word is identified as a whole by locating features on it [3]—namely, number and 

position of ascenders and descenders, positions of loops, and word length. Then it 

compares the features of the input word to the words it knows, and comes up with its 

best guess.

The system is reported [3] to do well for words with distinctive ascender/descender 

patterns, but not so well in words which are similar. Nevertheless, since this is a first 

step in a system that goes into more depth, this performance is promising.

Conclusion

Several years ago, people who used computers took for granted the notion that they 

would have to adapt to their style of input to something computer friendly—whether 

in typing, or filling out forms with letters neatly boxed. But now, computers whose 

sole input method is handwriting are doing well, and computers are taking on tasks 

once thought beyond their abilities. Handwriting recognition is, without doubt, 

changing the way people relate to computers.
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Yes, this paper is mineÑI wrote it myself without assistance of any kind. Despite the 
pain, suffering, and anguish endured during its creation, I did not plagiarize anything at 
all, and all material I used from outside sources is properly attributed to the best of my 
knowledge and ability. No animals were harmed in the production of this paper. Those 
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