
Handwriting Recognition Systems: An Overview

Avi Drissman
Dr. Sethi
CSC 496
February 26, 1997

Committing words to paper in handwriting is a uniquely human act, performed daily

by millions of people. If you were to present the idea of “decoding” handwriting to

most people, perhaps the first idea to spring to mind would be graphology, which is

the analysis of handwriting to determine its authenticity (or perhaps also the more

non-scientific determination of some psychological character traits of the writer). But

the more mundane, and more frequently overlooked, “decoding” of handwriting is

handwriting recognition—the process of figuring out what words and letters the

scribbles and scrawls on the paper represent.

Handwriting recognition is far from easy. A common complaint and excuse of people

is that they couldn’t read their own handwriting. That makes us ask ourselves the

question: If people sometimes can’t read their own handwriting, with which they are

quite familiar, what chance does a computer have? Fortunately, there are powerful

tools that can be used that are easily implementable on a computer. A very useful one

for handwriting recognition, and one that is used in several recognizers, is a neural

network.

Neural networks are

richly connected networks of simple computational elements. The
fundamental tenet of neural computation (or computation with
[neural networks]) is that such networks can carry out complex
cognitive and computational tasks. [9]

In addition, one of the tasks at which neural networks excel is the classification of

input data into one of several groups or categories. This ability is one of the main

reasons neural networks are used for this purpose. In addition, neural networks fare

well with noisy input, making them even more attractive.

Handwriting recognizers are broadly divided into two categories—on-line and off-line.

On-line recognizers run, and receive the data, as the user writes. Generally, they have

to process and recognize the handwriting in real- to near real-time. Off-line

recognizers run after the data have been collected, and the image of the handwriting,

for analysis, is given to the recognizer as a bitmap. Thus, the speed of the recognizer is

not dependent on the writing speed of the user, but the speed dictated by the

specifications of the system, in words or characters per second.

Drissman 1

The most common approach, used by most recognizers both on- and off-line, is to use

a neural network to distinguish the letters that make up the words, and then to run

the possible combinations of letters through a dictionary to find the word that the user

most likely intended. This is a very simplistic approach which begs important

questions, but it is a useful foundation for comparison.

On-line recognizers

There is a proliferation of on-line recognizers developed as compared to off-line

recognizers. There are two main reasons for this disparity. First, on-line recognizers

are easier to build [13], because the order of the pen-strokes is known, as well as

timing information. Secondly, handwriting recognition can easily be used for input in

handheld or PDA-style computers, where there is no room for a keyboard. Since a

recognizer in this use is very visible, this visibility spurs on development.

CalliGrapher

The first two commercial PDAs on the market were the Apple MessagePad with the

Newton OS, and the Tandy Zoomer, running GEOS. The first incarnation of the

Newton OS used the CalliGrapher recognizer from ParaGraph International [11]. As

the first mainstream recognizer on the market, CalliGrapher, as implemented on the

Newton, took a lot of beating, the most famous of which was a series of Doonesbury

cartoon strips lampooning the recognition ability of the Newton devices.

Part of the reason for the ridicule was that the dictionary was of fairly limited scope,

and often the wrong word was selected. In addition, expectations were set far too

high, and people often gave up before the recognizer adapted to their handwriting. For

its release with Newton 2.0 (version 2.1 [8]), there was a significant improvement

made to the recognizer, and a larger dictionary was added. With a print recognizer

from Apple (see below) taking a lot of the heat off of CalliGrapher, it’s been more

respected.

CalliGrapher uses a fuzzy-logic matching algorithm to match written characters, both

cursive and a mixture of cursive and print, with “prototypes” of letters [7]. The

prototypes used are general descriptions of the shapes of the strokes used to draw the

Drissman 2

character. When a user finishes entering a word, the recognizer attempts to match the

strokes to active prototypes to determine the letters. If the dictionary mode is on, then

the interpreted word is run through the dictionary in an attempt to find and cope with

errors.

Limited training is possible [7]. If the user never uses a particular prototype, then it

can be safely deleted, speeding up the recognition process and reducing the

possibility of future misinterpretation.

To know which prototypes a user really uses and which they
don’t requires the recognizer to know the correct answer. We
suppose that if a user corrects some answer by choosing a word
from the list of guesses, then this word is assumed to be the
correct answer and we will use the word for learning. We also
suppose that if a user did not correct a word, and wrote ten words
after it, that this word was correct. [7]

Creation of new prototypes is not allowed in the current system as implemented in

the Newton OS, because it is time-consuming and is considered to be of little benefit.

Adaptation of the prototypes to more closely match the user’s handwriting is available

with an add-on package [7].

Apple-Newton Print Recognizer

The Apple-Newton Print Recognizer (ANPR) was introduced in the release of the

Newton OS 2.0 along with the 2.1 version of CalliGrapher. Due to the pent-up

frustration due to the low initial accuracy of the version of Calligrapher used in

Newton OS 1, users seemed willing to restrict themselves to printing to get relatively

accurate recognition without much training.

ANPR uses a three-step process to attempt handwriting recognition [15]. The first step

in the process is tentative segmentation [15]. Since many characters comprise more

than one stroke, there is no easy or reliable way to correctly divide the strokes that

make up the word into letters. So the first task of the recognizer is to segment the

strokes into presumed groupings of strokes which might be letters. The segmentation

algorithm does not take into account any factors; all it does is generate all groups of

strokes that might be part of one character.

Drissman 3

The second part of the recognizer is the neural network [15]. The neural network gets

passed the stream of segments, and analyzes each segment in an attempt to recognize

it as a letter. The neural network is a multi-layer perceptron using error back-

propogation as a learning technique. (A neural network is composed of “neurons”,

simple units whose output is usually a function of the weighted sums of their inputs.

A perceptron uses these units in layers, with each layer feeding forward to the next

one. In most perceptrons, and in this one, the neural network does not process the

entire image but concentrates on specific areas. Back-propagation is a technique used

to train neural networks; when the output is in error, the information is passed

backwards through the nodes to allow them to adjust their weights. Details can be

found in a good introductory text such as [1] or [4].)

Of particular interest is the construction of the neural network. While on-line

recognizers have the advantage of knowing the order of the strokes, it would be

beneficial to also attempt to perform recognition on the bitmaps of the letters.

Therefore, the neural network is set up to take two sets of inputs: the stroke data and a

character bitmap. The two halves of the neural network independently converge on

letters, and a final layer merges the two letter decisions together [15]. It could

probably be said that this approach uses techniques of both on-line and off-line

recognition.

Finally, the context-driven search is given the letters and the groupings, and it has to

make the final decisions on which letters and which segments of strokes most likely

represent the word the user wrote [15]. It uses a set of language models to achieve this

goal. The language set consists of a set of rules; breaking rules incur penalties of

differing strengths. The rules range from letter transition rules (‘q’ without ‘u’

following is highly unlikely) to penalizing abrupt case transitions. Also, small

dictionaries with common prefixes and suffixes are used.

The search takes the set of interpreted letters and the original groupings of strokes,

and figures out the combination of them which racks up the smallest penalty. This

combination of letters, which hopefully is the user’s word, is what the recognizer

delivers as its final output.

Drissman 4

ThinkWrite

IBM’s ThinkWrite system, currently available for OS/2 and Windows 3.1, is a printing-

only system [8]. According to on-line documents, the ThinkWrite system uses a

“hybrid” [5] system combining on-line (stroke and timing based) and off-line (bitmap

based) recognizers, suggesting an underlying concept similar to Apple’s ANPR.

However, it doesn’t use a neural network, but algorithms to match the characters [8].

Graffiti

Graffiti [14], a product of Palm Computing (now a division of US Robotics), took the

market by storm with the original Newton CalliGrapher debacle. Graffiti, available for

almost all handheld platforms, takes a different approach to handwriting recognition

than CalliGrapher and ANPR by eschewing handwriting completely.

Graffiti uses a character system in which all letters of the alphabet and all symbols are

represented by one stroke. This solves two problems [10]. First, the stroke

segmentation problem that the ANPR dealt with in the first stage is eliminated by the

fact that each letter is represented by one stroke. This one-to-one correspondence

simplifies character separation greatly. Second, since the strokes can be chosen

arbitrarily (although some resemblance to the alphabet remains), letters which are

very similar in natural handwriting can have strokes assigned which are quite

different. This avoids many problems in recognition, and reduces the need for post-

processing to determine the appropriate character.

The character set of Graffiti. The dots indicate the starting point. [14]

Jeff Hawkins, in an interview with Pen-Based Computing, explained that Graffiti uses

a pattern-matching algorithm that

“…was inspired by my [Hawkins’s] neural theory, although it’s
not exactly based on it. It’s a very simple and clever algorithm for
doing pattern matching. However, it’s a very different approach
than other people have taken.” [6]

The theory that people will learn a new way to write the letters of the alphabet to

Drissman 5

achieve fast, consistent recognition may be true, but as the algorithms and networks to

recognize normal handwriting improve, then the need for Graffiti decreases, as

happened with the Newton with the transition to version 2.0. It has been used as the

sole input recognizer for several devices with mixed records—the Tandy Zoomer

which flopped, and the US Robotics Pilot, which is currently enjoying a fair amount

of success.

Off-line recognizers

Off-line recognizers haven’t had the attention—both good and bad—that their

relatives, the on-line recognizers, had. This is quite unfortunate because they can

play, and are playing, an essential role in a nation which is buried in paper. Several

problem areas exist where off-line handwriting recognizers can be of use because of

large quantities of hand-written data. Also interesting is that because the task of off-

line recognition is harder, more of the research is performed in universities than for

on-line recognizers.

One such area is postal address recognition [12]. While performing OCR on printed

addresses is relatively simple, recognizing the addresses that are handwritten is far

more difficult, and a tedious task ripe for assumption by recognizers. This task is

made easier because addresses have redundancy—ZIP codes specify the city and

state. Also, many parts of address blocks have a limited range of values—ZIP codes

are all digits, and are either five or nine digits long. There are only fifty states, each of

which has a two letter code, plus a few codes for territories.

Another area where off-line recognizers are finding use is in check reading [12].

Millions of checks pass through clearinghouses monthly, and each one must have the

amount written on it machine coded on the bottom. This, again, is an ideal task for

recognizers. Checks have great redundancy, because the dollar amount is written both

in figures and out in words. Secondly, the character set is limited—digits for the

number field, and a limited vocabulary (“one”, “sixty”, “hundred”) of words for the

spelled-out field.

It is important to remember that in both of these target applications, a 100%

Drissman 6

recognition rate isn’t essential. Since these fields already have a large staff to currently

process the items, recognizers can flag any item as unreadable and set it aside for

manual processing, while taking care of the clear-cut cases. A good example is a

check-reading system sponsored by the French post office, which has a goal of a

0.01% error rate which it hopes to accomplish by allowing 50% of the checks to be

rejected by the system (and routed to humans) as unreadable [13].

A. W. Senior

A. W. Senior, a researcher at Cambridge University in England, describes in [13] a

fairly typical off-line handwriting recognition system. The system uses words written

with plenty of separation between them from a group of words typically used on

checks. Because of the great difficulty involved in deciphering handwriting without

stroke timing information, as available in on-line recognizers, most off-line

recognizers use neural networks to recognize the letters, while many on-line

recognizers employ other methods.

On-line recognizers get the strokes input by the user as their direct input, ready to be

processed and recognized. Off-line recognizers don’t have that luxury. Several steps of

pre-processing are needed to ensure that the image is normalized, all strokes are a

consistent width, and the data are changed into a form that the neural network can

deal with [13].

Senior’s system employs several steps of pre-processing and data massaging [13].

First, it attempts to find the baseline of the written words, and rotate the image to a

horizontal position. Then it finds vertical strokes in the words, and skews the images

until those identified strokes are vertical. Then, since we want the system to be

independent of pen thickness, all strokes are thinned to a one-pixel thickness.

Since a bitmap is rather unwieldy to manipulate, and since the strokes of the letters

are more important, the bitmap is “parameterized” according to a grid [13]. If a stroke

passed through a box, the box is marked according to the direction of the

stroke—horizontal, vertical, or at the 45° angle. If the stroke falls between those

directions then it counts as both.

Drissman 7

The four preprocessing steps of Senior [13]. The top left image is the original.
From left to right, top to bottom, the steps are: slope correction, slant correction,

thinning, parameterization boxes, and parameterization. Illus. from [13].

The neural network used by Senior is a recurrent perceptron [13]. A recurrent neural

network is simply one which has a loop where some of the outputs are fed back into

the network as inputs. This allows the network some context in which to work. The

neural network itself is a standard perceptron.

CEDAR Penman

Penman [2] takes a different approach to off-line recognition by attempting to read

multiple lines of naturally-written handwriting. Here too, just as in Senior’s system

[13], the task of recognizing the handwritten words of the user is overshadowed by the

preprocessing required. The preprocessing is similar to Senior’s, but more tasks need

to be done as this system does not assume that the words are isolated on the page

amidst white space.

The first step in this system is the separation of lines [2]. Penman does this by

analyzing the outlines of the characters, and finding the “extreme points” (places at

which the shape of the outline bends considerably) on them. From the points, it

estimates the line height. Then it starts going through the points, grouping them into

lines. If a group of points is too far away from a line (based on the calculation of the

line height) then that group of characters is considered a new line.

The next task is the separation of lines into individual words [2]. The creators of

Penman considered this as a difficult task, especially considering the fact that people

often leave little to no space in-between words. Using an algorithm based on visual

clues, they extracted data to use in a neural network trained to discern words.

Drissman 8

The result of letting the word segmentation neural network loose on an example
set of data. [2]

The word recognizer in Penman is based on feature extraction [2], in which the loops,

lines and distinguishing characteristics of the scanned data are extracted and

analyzed to determine the letters. The sequences of recognized letters is compared

against words in a dictionary to aid accuracy.

A post-processing step is useful in determining which choices of words are the ones

in the sentence. Penman uses post-processing models based on knowledge of the

language is is recognizing [2]. Not much more detail is available in [2] about the post-

processing stage.

Guillevic and Suen

Guillevic and Suen, researchers at Concordia University, developed a system [3] to

read the legal amount (the value written out in words) on checks. They classified all

attempts to read handwriting into two categories: recognizing the word as a whole, or

trying to break it up into its constituent letters and recognizing them individually.

Eventually, it was decided to use both methods—first trying to identify it according to

its overall shape, and if that was insufficient to then try breaking it up into characters.

Their paper [3] only describes the first method.

Their system starts with the usual preprocessing in order to normalize the input data

[3]. Interestingly enough, their first step is connection of broken images. Since

conversion from a gray-scale image to a black-and-white image might cause drop-outs

in the lettering, they use a routine which checks if two unconnected strokes are close

enough to each other, and if they are, the routine connects them. They did not say

how they defended against spurious connections; while the word recognition

Drissman 9

described in [3] wouldn’t be terribly affected, it is unclear what affect it might have on

a letter-by-letter recognition.

The next step in preprocessing is the usual slant correction [3]. This simplifies

recognition by eliminating some of the natural variation of people’s handwriting. This

recognizer, unlike other recognizers, doesn’t bother with slope correction. This is

probably due to the fact that checks have a line to write on, and most people stay on

the line.

The last two steps in preprocessing [3] are noise removal and line removal. Noise

removal identifies all the connected components of the image and removes all of them

under a given size. Line removal identified the long horizontal lines many people

write before and after amounts and removes it. Both of these steps help the recognizer

by removing as much non-word data as possible.

The word is identified as a whole by locating features on it [3]—namely, number and

position of ascenders and descenders, positions of loops, and word length. Then it

compares the features of the input word to the words it knows, and comes up with its

best guess.

The system is reported [3] to do well for words with distinctive ascender/descender

patterns, but not so well in words which are similar. Nevertheless, since this is a first

step in a system that goes into more depth, this performance is promising.

Conclusion

Several years ago, people who used computers took for granted the notion that they

would have to adapt to their style of input to something computer friendly—whether

in typing, or filling out forms with letters neatly boxed. But now, computers whose

sole input method is handwriting are doing well, and computers are taking on tasks

once thought beyond their abilities. Handwriting recognition is, without doubt,

changing the way people relate to computers.

Drissman 10

References

1. Aleksander, Igor and Helen Morton. An Introduction to Neural Computing.

Second Edition. Thompson Computer Press, London, 1995.

2. CEDAR. “Penman: Handwritten Text Recognition Project Description”. Available

from http://www.cedar.buffalo.edu/Penman/description.html

3. Guillevic, Didier and Ching Y. Suen. “Cursive Script Recognition: A Sentence

Level Recognition Scheme”, In Int. Workshop on the Frontiers of Handwriting

Recognition (IWFHR), Taipei, Taiwan, p. 216-223, December 1994. CENPARMI,

Concordia University, Montréal, Canada. Available from

http://www.cenparmi.concordia.ca/publications/PS/guillevic_iwfhr94.ps.Z

4. Hertz, John, et al. Introduction to the Theory of Neural Computation. Addison-

Wesley Publishing Company, Redwood City, California, 1991.

5. IBM Corporation. “Handwriting Recognition for Pen Computers”. Available from

http://www.almaden.ibm.com/cs/showtell/handwriting/Initpage.html

6. Jerney, John. Executive View: A Conversation with Palm Computing’s Jeff

Hawkins. Pen-Based Computing. Available from

http://www.volksware.com/pbc/article/hawkins.htm

7. Lossev, Ilia. Characters from Russia: ParaGraph’s CalliGrapher Handwriting

Recognition. Pen Computing Magazine. June 1996, 34–35.

8. MacNeill, David. Handwriting Recognizer Specification Matrix. Pen Computing

Magazine. August 1995, 32–33.

9. Mehra, Pankaj and Benjamin W. Wah. Artificial Neural Networks: Concepts and

Theory. IEEE Computer Society Press, Los Alamitos, California, 1992.

10. Palm Computing. “Graffiti White Paper”. Available from

Drissman 11

http://www.iicm.edu/0x811b9908_0x0012144a;internal&sk=ROBOT/

11. ParaGraph International. http://www.us.paragraph.com/

12. Rawson, C. Edward. “Breaking Down the Last Document Automation Barriers!”

Available from http://www.infotivity.com/hwr.htm

13. Senior, A. W. “Off-Line Handwriting Recognition: A Review and Experiments”,

Technical Report CUED/F-INFENG/TR 105, Cambridge University Engineering

Department, Cambridge, England, Dec. 1992. Available from ftp://svr-

ftp.eng.cam.ac.uk/pub/reports/senior_tr_105.ps.Z

14. US Robotics. “Graffiti”. Available from http://www.usr.com/palm/5036.html

15. Yaeger, Larry, Brandyn Webb, and Richard Lyon. “Combining Neural Networks

and Context-Driven Search for On-Line, Printed Handwriting Recognition”. For

the Fifth International Workshop on the Frontiers of Handwriting Recognition

(University of Essex, England, September 1996). Available from

ftp://ftp.apple.com/pub/larryy/ANHR/Yaegeretal.AppleRecog.bin.2.ps.Z

Drissman 12

Yes, this paper is mineÑI wrote it myself without assistance of any kind. Despite the
pain, suffering, and anguish endured during its creation, I did not plagiarize anything at
all, and all material I used from outside sources is properly attributed to the best of my
knowledge and ability. No animals were harmed in the production of this paper. Those
who appreciate quality enjoy it responsibly.

Avi Drissman

